Technical Inputs to Water Allocation Plans

Steve Barnett Principal Hydrogeologist Kumar Savadamuthu Principal Hydrologist (in absentia)

Science, Monitoring and Knowledge Branch

Government of South Australia

Department of Environment, Water and Natural Resources

What are tools for managing water resources ?

- State Water Acts regulate groundwater allocation, use and protection
- Various State Policies, Strategies, Guidelines
- Statutory Water Allocation Plans

Government of South Australia

Department of Environment, Water and Natural Resources

What does a WAP consider ?

- Water quantity
- Water quality (to some extent)
- Water dependent ecosystems
- Balance between social, economic and environmental needs

What does a WAP include ?

- Sustainable yield / allocation limit
- Resource condition limits (triggers)
- Rules to protect existing users
- Local trading rules
- Monitoring requirements
- Process for allocation reductions if necessary

The Planning Cycle

Technical inputs to Water Allocation Plans

- Questions to consider;
- 1. How much water can be allocated ?
- 2. Are there any adverse impacts ?
- 3. Are there surface water / groundwater interactions ?
- 4. Provision for water dependent ecosystems

Water allocation and usage (ML/yr)

low

Management effort and data requirements

high

Surface water

Government of South Australia

Department of Environment, Water and Natural Resources

Mt Lofty Ranges PWRAs

- 72 catchments
- Ephemeral streams
- Rain 1200 400mm
- Water supply reservoirs
 - + 20,000 farm dams
 - + WC extractions
- Ecosystems
- flora & fauna
- permanent pools, SF swamps, Lakes

Catchment rainfall-runoff models WaterCress - Node-link resource modelling platform

Example – Upper Finniss catchment

Data Sources: CLIMATE STATIONS AND RAINFALL: Bureau of Meteorology TOWNS AND LOCALITES: Information and Data Analysis, Planning SA Produced by the Surface Water Group, Knowledge and Information Division, DWLBC

64

Resource capacity estimation

- Model calibrated to daily streamflow data (~ 30 years)
- Farm dams & forestry accounted for
- Resource Capacity (how much water available to be shared amongst all users) - modelled baseline flows (pre-development) with the impacts of farm dams, water course extractions & forestry removed

Water dependent e

Physical habitats

- Fleurieu Swamps, wetlan
- Biotic functional grou
- Plants (10 groups), macro and fish (10 groups
- Reach types (geomorr
- Headwaters, pool riffles wetlands,....

Government of South Australia Department of Environment,

Department of Environment, Water and Natural Resources

Environmental water requirements

- The water regime needed to sustain the ecological values of aquatic ecosystems, including their processes and biological diversity, at a low level of risk
- EWRs usually fully met only in pristine systems with no development
- Need to relate EWRs to streamflow (which can be measured, modelled and managed)

EWRs need to consider ecological processes and the flow conditions that support them

Overbank / Bankfull Maintenance and recruitment of upper-riparian and floodplain vegetation - Transport of organic matter into and along watercourse - Regulate the distribution of terrestrial and amphibious plants Fresh - Refresh water quality in pools Low flows - Fish breeding and recruitment - Persistence of pools Fish migration - Fish breeding and recruitment Maintenance and recruitment of - Create and maintain riffle habitats riparian vegetation Groundwater Remove excess sediment from - Maintain persistence of pool habitat pools and riffles - Maintain amphibious plant communties

and flow seasons

Example of EWRs for Mountain Galaxias

Process	Water requirements
Refuge pools stay wet	Groundwater inflow & low flows over low flow season
	Sufficient flow over higher flow seasons to fill
Refuge pools not too salty	Freshes over low flow season to reduce salinity in refuge pools
Refuge pools stay deep enough	High flows and bankfull flows to scour out silt and maintain deep pools any time
Movement between pools for breeding and recolonising	Freshes and high flows to link pools for transitional flow seasons and high flow season (autumn to spring)
Clean areas to lay eggs	Freshes to flush silt in transitional 1(low-high) season (late autumn)
Triggers to spawn	Increased flows in transitional 1(low-high) season
Discourage exotic fish	High and bankfull flows to wash them out any time

Need to relate EWRs (qualitative) to flow metrics (quantitative)

Use stream cross sections to relate streamflows to EWRs (low flow, freshes, bankfull in different flow seasons)

Developing hydrological metrics for EWRs

The rainfall- runoff model (pre-development) was used to calculate the hydrological metrics applicable to most test sites across the MLR

EWR component	Hydrological measure
Low flows	<u>80th percentile</u> exceedance flow for the flow season of interest (calculated on <u>non-</u> <u>zero</u> flows)
Fresh	<u>2</u> <u>times</u> the <u>median</u> of all non-zero flows in the flow season of interest
Bankfull/ Overbank	<u>1.5</u> annual return interval flow (based on annual maximum flows)

Example of EWR Metric assessment

10								_			
Kersbi	rook	Wet Upper Pool Riffle	#	Measurement units	Threshold	Priority	Natural	Current	Change	Threshold change	Rating
Assual	(Jacomana)			low l	1	1	1000	1	1 mers 1	0.000	2 2
	Bankfull	Number of years with 1 or more bankfull flows	1	# years		2	21	23	1.10	1.10	met
_		Average number of bankfull flows per year	2	events/year	2	na	2.4	2.8	1.17	1.17	na
-		Average duration of bankfull flow spells	3	days	2	2	2.1	1.9	0.92	0.92	met
-		Average total duration of bankfull flow per year	4	daysiyear	2	2	5.0	5.4	1.07	1.07	met
		Return time of pairs of years with sequential bankfull flows	6	every years	-	na	-	2.1		1	na
Low Flo	w Season			Panaza Mesazorang	-	1 225		0.5291			and a
	Low Flows	Average daily LFS flow	7	ML/day		3	0.98	0.36	0.37	0.37	not met
		80th percent exceedence non-zero flow	8	ML/dsg		A	0.03	0.02	0.67	0.67	not met
-			114	0.3752.554				1.22080000	10000	in the second	
_	Zero Flows	Number of years with LFS zero flow spells	9	# years	4	1	33	33	1.00	1.00	met
		Average number of LFS zero flow spells per year	10	events/season	4	2	5.8	3.9	0.68	0.68	not met
-		Average duration of LFS zero flow spells	12	daysrspell	4		675	20.0	1.27	1.27	not met
		Hierage total datation of Er o zero now per year		dayorbeaboir	-		01.2	02.0	3.51	3.01	114
1	Low Flow Fres	Number of years with one or more LFS freshes	13	# years		1	33	32	0.97	0.97	met
1	1961 m. 0. 1924 m. 1989.	Average number of LFS freshes per year	14	events/season		1	4.0	3.3	0.83	0.83	met
		Average duration of LFS freshes	15	days/spell		na	7.9	4.6	0.59	0.59	na
8		Average total duration of LFS freshes per year	16	days/season		2	31.7	15.5	0.49	0.49	not met
The second	in the state		1.00					100 M 10			
	Low Flows	Average daily T1 flow 80th percent exceedence non-zero flow	17	ML/day ML/day		3	5.91 0.38	3.22	0.54	0.54	not met
		Current month reaching median flow of natural T1 median (datau)	19	# uests		-	14	16	0.47	0.47	not met
		San and an exacting include new or induction (include (delay)	1.5	- YSALS					0.41	0.41	novinee
	Zero Flows	Number of years with T1 zero flow spells	20	# years	4	1	11	20	1.82	1.82	not met
	D10143023706348236	Average number of T1 zero flow spells per year	21	events/season	4	2	0.4	0.8	1.00	1.00	met
	1	Average duration of T1 zero flow spells	22	days/spell	4	1	8.3	14.8	1.78	1.78	not met
		Average total duration of T1 zero flow per year	23	days/season		na	3.3	11.2	3.43	3.43	na
	T1 Freeber	Number of users with one or more T1 feacher	24	#			22	09	0.88	0.88	mak
	TTTTESNES	Average number of T1 freshes per year	25	+ years	-	-	5.3	35	0.66	0.66	not met
		Average duration of T1 freshes	26	daus/spell		na	3.8	2.9	0.76	0.76	na
		Average total duration of T1 freshes per year	27	days/season		2	19.8	10.0	0.50	0.50	not met
			100	1000 000 000 000 000 000 000 000 000 00		- W - 1		33352	2.008	100	The second Street
		Number of years with 2 or more T1 Freshes	28	# years	L	2	32	27	0.84	0.84	met
-		Frequency of spells higher than LFS fresh level	29	events/season		na	2.3	3.5	1.52	1.52	na
High FL	an Service		-		1	-		-	-	-	2
inge i r	Low Flows	Average daily HES flow	30	ML/dau		3	17.54	18.82	1.07	1.07	met
		80th percent exceedence non-zero flow	31	ML/day	-	1	0.42	0.63	1.50	1.50	met
-	Com come		132	67 ^{23,25} 0		1 - 82 - 1	24223.00	1.2523	1. 19.54	1 9352	ance .
-	Zero flows	Number of years with HFS zero flow spells	32	# years	4	1	8	7	0.88	0.88	met
		Average number of HFS zero flow spells per year	33	events/season	4	2	0.4	0.3	1.00	1.00	met
		Average duration of HFS zero flow spells	34	days/spell	4		4.4	6.7	1.52	1.52	not met
		Average total duration of Hr 3 zero flow per year	35	daysrseason		na	1.0	2.2	1.40	1.40	na
1		Number of years with average zero flow spell duration > 7 days in HF:	36	# years		na	2.0	2.0	1.00	1.00	na
	HES Frachas	Number of users with one or more HES fraction	37	# usses				33	100	100	mak
	III S I TESHES	Average number of HFS freshes per year	38	events/season		1	7.5	6.7	0.89	0.89	met
		Average duration of HFS freshes	39	days/spell		nə	6.1	7.0	1.14	1.14	na
		Average total duration of HFS freshes per year	40	days/season		2	46.4	46.9	1.01	1.01	met
			233	13 (2999) 2003 (2004) 2014					1.332	338	- YNGG
		Number of years with 1 or more spell greater than the annual 5th p.e. f Number of years with 2 or more freshes early in the season (Jul. Aug.)	41	# years # years	-	2	27	28	1.04	1.04	met
T											
Transici	Low Flows	acason Anorada daile TO flam	12	MDAN	-		2.60	3.10	1.19	1.19	mak
	LOW HOWS	Median non-zero dailu T2 flow	44	ML/dau		2	0.18	0.33	1.82	1.82	met
		80th percent exceedence non-zero flow	45	ML/day		- A -	0.03	0.05	1.67	1.67	met
-			22.5	103808450		1 W.		1.865	1 2000	2000	1000
		Current month reaching median flow of natural T2 median (early onset	46	# years	-	1	23	2	0.92	0.92	met
	Zero flows	Number of years with T2 zero flow spells	47	# years	4	4	18	15	0.83	0.83	met
-	Prove Social Concession	Average number of T2 zero flow spells per year	48	events/season	4	2	0.9	0.7	1.00	1.00	met
		Average duration of T2 zero flow spells	49	days/spell	4	1	6.3	7.0	1.11	1.11	met
1	-	Average total duration of T2 zero flow per year	50	days/season		na	5.9	4.3	0.83	0.83	na
1	T2 Frachas	Number of users with one or more T2 fracker	54	# manre			97	98	104	104	mak
1	. C TTESHES	Average number of T2 freshes per year	52	events/season		4	1.0	11	1.04	1.04	met
	1	Average duration of T2 freshes	53	days/spell		na	9.0	10.5	1.16	1.16	na
		Average total duration of T2 freshes per year	54	days/season		2	9.3	11.7	1.26	1.26	met
3			13.5			1 × 1	519877	20101		1 1000	1 1000
		Frequency of spells higher than LFS fresh level	55	events/season		ha	1.0	1.1	1.06	1.06	na
-	-	Number of years with 1 or more spell greater than the annual 5th p.e. f	56	# years		2	4	20 5 3	1.25	1.25	met
		Number of consecutive years with no T2 fresh	51	# years		na	2	1	0.50	0.50	nə
12		Number of years with pankrull riows in 12	50	+ years	-	na	- 10 - 1		2.00	2.00	na

Assessments were made using the rainfall- runoff model to compare predevelopment and current conditions (eq dams, forestry etc)

Are EWRs currently being met?

If it assumed that all metrics must be fulfilled to meet EWRs, the modelled impact of current development conditions (eg dams, forestry etc) suggests that EWRs are generally <u>not being met</u>

Average metrics failed is 32%

EW Requirements vs Provisions

- Environmental water requirement is to pass all of the metrics, which is not likely to be achievable in the current landscape
- Need EWPs that balance social, economic and environmental needs for water
- How many metrics need to pass to achieve acceptable ecological outcomes ? – to maintain self sustaining communities that are resilient with an acceptable risk
- No more than 15% of EWR metrics NOT met for at least 75% of sites

Role of science

- In the EWR vs EWP debate, the role of science (ie the technical input) is to assist in achieving the balance between social, economic and environmental needs
- This can be achieved by investigating the implications of implementing various policy options
- An example is the provision of low flow conditions which has been identified as a major issue
- The rainfall-runoff model can be used to evaluate options to address this issue

EWP <u>without</u> provision of low flow conditions

EWP with provision of low flows

Groundwater

Government of South Australia

Department of Environment, Water and Natural Resources

Sustainable yield

Technical definition in SA

"the groundwater extraction regime, measured over a specified planning timeframe, that allows acceptable levels of stress and protects the higher value uses associated with the total resource"

Government of South Australia Department of Environment,

Department of Environment, Vater and Natural Resources

Sustainable yield

- This definition is flexible
- Higher value uses could be irrigation, town water supply, industry or ecosystem support
- Determination and ranking of these uses, as well as deciding what are acceptable impacts, will require both community and expert opinion
- There is no single formula for SY, each resource requires a specific method

Quantifying sustainable yield

- Fundamental to GW management
- Difficult to do without the right data
- Methods range from simple water balance methods to complex numerical groundwater flow models
- Need to understand the uncertainties and risks to the resource

Data requirements

- Areal extent of aquifers and conf layers
- Saturated thickness of aquifers
- Aquifer parameters (T, k, Sy)
- Rainfall, evaporation, streamflow data
- Extraction where and how much
- Salinity distribution
- Water level and salinity trends

Unconfined aquifers in SA

- Unconfined aquifers are found in both the fractured rock and sedimentary environments
- Because they are recharged by rainfall, groundwater level trends follow rainfall trends
- These are widely developed for use in the higher rainfall areas of SA, namely
 - Southeast
 - Mt Lofty Ranges
 - Eyre Peninsula

How do we manage unconfined aquifers ?

BANK BALANCE

INCOME

Unconfined aquifer management approach

- Recharge used to determine extraction limits in most unconfined aquifers (SE, MLR, EP)
- Recharge cannot be measured directly and varies over time and spatially, estimates +/- 30%
- Increasing use of adaptive management, supported by modelling and resource condition limits
- This approach especially appropriate for climate change
- Extensive and accurate monitoring data essential

Confined aquifers in SA

- These systems have very little or no dependence on direct rainfall recharge
- The response delay to rainfall changes could vary from decades to hundreds of years
- These aquifers are found throughout SA,
 - Southeast and Mallee
 - GAB
 - St Vincent and Willunga Basins

Government of South Australia Department of Environment, Water and Natural Resources

Confined aquifer management approach

- Although not directly recharged from rainfall, extraction is balanced by lateral inflows and leakage
- Sustainable yield determined by limiting adverse impacts resulting from extraction
- Adverse impacts can be excessive drawdowns or inflows of saline groundwater (vertical leakage or laterally)
- Groundwater modelling usually required to determine limit, with on-going monitoring and adaptive management

Government of South Australia Department of Environment, Water and Natural Resources

Salinity Management <u>Regional</u> processes that cause salinity increases

Surface water / groundwater interactions

AFTER DEVELOPMENT

Recharge = Pumping + Discharge

Hills Zone

DEVELOPMENT AT SAFE YIELD

Recharge = Pumping

Hills Zone

East

SUSTAINABLE DEVELOPMENT

Recharge = Extraction limit + Baseflow

Hills Zone

Surface Water / Groundwater Interactions in Eastern Mount Lofty Ranges Catchments Surface Water and Groundwater Interaction

Defining gaining or losing reaches by hydrochemistry and streamflow measurements

Groundwater case studies

Government of South Australia

Department of Environment, Water and Natural Resources

Peake, Roby and Sherlock Prescribed Wells Area

- Confined aquifer only source of water for town water supply (TWS), stock and domestic supplies
- Rapid development of confined aquifer by one main irrigator, outside any management area i.e. no controls

Government of South Australia

Department of Environment, Water and Natural Resources

BEFORE PUMPING

DURING PUMPING

Management issues

- Extractions have caused significant drawdowns
- Adverse impacts include ;
- Flow reversal of more saline groundwater
- Forcing S&D users to deepen / upgrade pumps
- How to determine sustainable yield of the confined aquifer?

Peake, Roby and Sherlock PWA sustainable yield

What don't we want to happen to the resource? (i.e. what are unacceptable impacts?)

1. Water level ;

a. Should not fall below confining layer?b. Should not affect stock and domestic users?

2. Salinity;

a. Should not affect the use of the resource?

- Groundwater model can predict salinity increases at various extraction rates
- What is an acceptable value of salinity increase ?

- Who decides what the acceptable rate of salinity increase is?
- Not the hydrogeologist! Community consultation the key
- In effect, the chosen value will be used to set initial allocations, but then adaptive management and salinity monitoring will be used in future

Government of South Australia Department of Environment,

Department of Environment, Water and Natural Resources Polda Basin

Eyre Peninsula Water Resources

80

40

Ο

40

120 Kilometres

Polda Basin (Musgrave PWA) - volume and salinity

- Shallow and thin limestone aquifers
- Amount of groundwater stored in aquifer very sensitive to rainfall recharge
- Contains low salinity groundwater

Government of South Australia Department of Environment, Water and Natural Resources

Musgrave PWA Groundwater Basins

Groundwater levels falling from 1980 to 2009

Polda Basin – water levels 1960, 1992 and 2008

Polda Basin – salinity levels

- What is the cause of the salinity increase that occurs with a fall in groundwater level?
- Some discharge processes take salt as well
- Natural discharge always in conflict with recharge – and sometimes wins!
- Can this be managed?

Government of South Australia

Department of Environment, Water and Natural Resources

Mallee PWA - Volume

- Large areas underlain by a limestone aquifer with irrigation quality groundwater
- Current recharge is very low, last significant recharge was 20,000 yrs ago
- Aquifer averages over 100m in thickness and contains about 100 million ML in storage

Government of South Australia Department of Environment, Water and Natural Resources

MALLEE REGION GROUNDWATER SECTION

Centre pivot irrigation of potatoes generates about \$75 million/yr
Sustainability issues

- Is this a non-renewable resource?
- Should the huge amount of storage be left for the use of future generations?
- If so, WHEN should they start using it?
- By starting to use it now, 'permission' is given for future generations to use it also

Government of South Australia Department of Environment,

Department of Environment, Water and Natural Resources

Mallee PWA new post-development equilibrium

- SY determined as 'mining' a small portion of the huge storage (= 5cm/yr drawdown)
- Resource will be depleted by 15% in 300 years
- Drawdown impacts mitigated by cost sharing scheme to pay for pump lowering and well deepening for S&D users
- Salinity risk low and may take decades to detect (modelling and monitoring)
- Buffers around existing irrigation wells to minimise concentration of pumping

Government of South Australia Department of Environment, Water and Natural Resources

Summary

- Complex science is routinely applied to determining sustainable extraction limits and evaluating policy options for WAPs
- There is no standard formula each resource is different and requires a special approach
- The science must be sound, transparent and understood by stakeholders

Government of South Australia Department of Environment, Water and Natural Resources

Challenges

- Resourcing in a drying fiscal climate
- Scepticism of science from some community members (usually with other agendas)
- Maintaining appropriate monitoring (stream guaging)

Government of South Australia

Department of Environment, Water and Natural Resources

Challenges

- Modelling limitations, confidence levels &
- Runoff Hitw: Volumes VS Flow regimes!
- Scaling: Catchment sub-catchment property ...
- Ungauged catchments:
- Low & High Flows: measurement, gaugings, ratings. Surface - Ground water interction
- **Science Policy Legal Interface**
- Articulate the above : Community Confidence

Government of South Australia Department of Environment Water and Natural Resources

